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Abstract— Previous results in the literature have shown that
derivation of the optimum maximum-likelihood (ML) receiver for
symbol-by-symbol (SBS) detection of an uncoded data sequence in
the presence of random phase noise is an intractable problem, since
it involves the computation of the conditional probability distribution
function (PDF) of the phase noise process. In this paper, we seek
to minimize symbol error probability (SEP), which is achieved by
SBS detection of the sequence based on all received signals. We
show that the ML detector for this problem can be formulated
as a weighted sum of central moments of the conditional PDF
of phase noise. Given that the central moments of the conditional
PDF of phase noise can be estimated, this new optimal structure is
tractable with respect to the previously known optimal ML receiver.
Furthermore, based on the new receiver structure, we propose
a simple approximate method for SBS detection and investigate
its scope and applicability. Simulation results demonstrate that
SEP performance close to optimality can be obtained through the
proposed method for scenarios of low phase noise variance and low
signal-to-noise ratio (SNR).

I. INTRODUCTION

Local oscillator instabilities that result in random, time-varying

phase difference between the transmitter and receiver, have

been one of the major impediments towards realizing a reliable

coherent communication system [1]. This impairment, referred

to as phase noise can result in significant performance loss if not

compensated appropriately.

The problem of receiver design of uncoded data detection in

the presence of a random phase noise process has been studied

for decades, e.g., refer to [1], [2] and references therein. One of

the earlier and important approaches to this problem was reported

in [3], which proposed simultaneous maximum-likelihood (ML)

estimation of the data sequence and phase noise. However, it

was not proved if the approach ensures optimality in terms of

achieving minimum symbol error probability (SEP). In [4], it

was shown that the simultaneous approach proposed in [3] is

optimal in the high signal-to-noise ratio (SNR) regime.

A receiver structure, optimum with respect to the minimum

SEP criterion, was first derived in [5]. Specifically, it was illus-

trated that the optimum symbol-by-symbol (SBS) receiver has a

separable estimator-detector structure, i.e., all the received signals

are used to first compute/estimate the posteriori or conditional

probability density function (PDF) of phase noise. The informa-

tion in this posteriori density function is then used to detect a

data symbol. However, it was observed that this optimum detector

can only be realized if the conditional PDF of phase noise has

a closed-form expression. In general, the problem of computing

the conditional PDF of phase noise given all the received signals

has been demonstrated to be an infinite dimensional problem

[5], and the optimum receiver structure is found to only be

analytically tractable under restrictive assumptions on the phase

noise distribution and the receiver structure.

The analytical intractability of the optimum receiver structure

in [5], combined with limited scope of data-aided phase estima-

tion schemes, spurred interest in designing joint data sequence

detection and phase estimation algorithms, instead of SBS de-

tection. Some related examples are the per-survivor processing

algorithm in [6], tree-pruning algorithm in [7], and expectation

maximization algorithm in [8]. Generalized-likelihood based joint

data sequence detection and phase noise estimation algorithm of

polynomial complexity was proposed in [9]. For a constant phase

offset model, the algorithm was observed to achieve performance

close to that of the optimal ML receiver. Iterative methods based

on factor-graphs for data detection and phase noise estimation

were proposed in [10]. In [11], an adaptive maximum likelihood

sequence detection scheme based on Viterbi algorithm was pro-

posed for uncoded data sequence detection in the presence of

a random phase noise process. However, it is well known that

sequence detection schemes in [6]–[11] do not achieve optimal

SEP performance in the presence of a random phase noise

process. Application of Monte Carlo sampling methods to phase

noise estimation and uncoded data detection was investigated in

[12], which incurs high computational complexity.

In this paper, motivated by the optimal receiver structure

derived in [5], we re-visit the problem of optimal detection of

an uncoded data sequence in the presence of phase noise. We

seek to minimize SEP, which is achieved by SBS detection

of the sequence. Detection of each symbol is based on the

entire received signal, corresponding to the entire data sequence,

thereby accounting for correlated phase distortion (memory) in

the received signals. The contributions and organization of this

paper can be summarized as follows:

• In Section II, the system model for optimal detection of an

uncoded data sequence in the presence of phase noise is

presented. This is similar to that in [5].

• In Section III, without making any assumptions on the PDF

of the phase noise process, we derive an alternative form

of the ML receiver that is analytically tractable with respect

to the original receiver in [5]. Specifically, the ML detector

is formulated as a weighted sum of the central moments of

the conditional PDF of the phase noise as opposed to the

convoluted conditional PDF computation in [5].

• Furthermore, in Section III, we present an analytical method

to approximate the alternative ML rule by truncating it to

a finite number of terms while still ensuring that its SEP

performance is close to optimal. Then, we truncate the

new optimal ML rule to two terms for SBS detection and

investigate its scope and applicability.

• In Section IV, we present our simulation results, which

demonstrate that performance close to that of the optimal

ML detector can be achieved for scenarios of low phase



noise variance and low SNR through the proposed truncation

approach.

Notations: Expectation operator is denoted as E[·]. [·]T denotes

transpose and [·]H denotes Hermitian of a vector, and I denotes

the identity matrix. Re(·), Im(·), and arg(·) are the real, imaginary

part, and angle of a complex number respectively.

II. SYSTEM MODEL

Consider a system with the following received signal model in

the kth time slot

rk = mkejθk + nk, (1)

where, rk is the received signal, mk is the transmitted symbol,

θk is the unknown phase noise, and nk is complex Gaussian

noise in the kth time slot. r , [r0, . . . , rL−1]
T

represents the

vector of all L received symbols in L time slots. We assume

transmission of uncoded data that are denoted in the vector form

as m , [m0, . . . ,mL−1]
T

. Since the data is uncoded, we assume

that all elements in m are independent of each other, and are

transmitted with equal probability. Also, it can assume the value

of any point {Si,∀i ∈ {1, . . . , C}} in the signal constellation,

where C is the total number of signal points in the constellation.

Let θ, [θ0, . . . , θL−1]
T

denote the vector of unknown phase

noise random variables, where no assumptions are made on its

PDF. It is assumed that m and θ are independent of each other.

The AWGN channel is n , [n0, . . . , nL−1]
T

, i.e., it is a vector

of independent identically distributed (i.i.d.) complex Gaussian

random variables with E[n] = [0, . . . , 0]T , and E[nnH ] = N0I,

i.e., nk ∼ CN (0, N0).
We investigate the problem of optimum symbol detection based

on all received signals, r, such that the SEP is minimized. It

is known that optimum SBS detection of the kth symbol that

minimizes SEP is obtained by ML detection [13]. Thus, the

optimum receiver for the kth symbol is given by

max
i∈{1,...,C}

Li(k) = max
i∈{1,...,C}

p(r|mk = Si), (2)

In the case of optimum ML detection, in [5], it has been shown

that Li(k) reduces to the following

Li(k) =

∫ π

−π

p(rk|mk = Si, θ(k))p(θk|rk)dθk, (3)

where rk , [r0, . . . , rk−1, rk+1, . . . , rL−1]
T

, refers to all signals

received outside the kth interval. The optimum ML detector first

involves the estimation of the conditional PDF of phase noise in

an interval using all signals received outside it. This conditional

PDF is then used to perform data detection using (3). As shown

in [5], the conditional PDF p(r|mk = Si) can be determined

only in special cases.

The detector in (3) reduces to the conventional receiver ap-

proach when the carrier phase is first recovered by a phase

estimator, followed by coherent detection of the symbols, i.e., the

recovered phase θ̂k is treated as the true value of θk. To illustrate

the aforementioned amenability, consider the conditional PDF of

θk to be a distribution with zero variance or equivalently a delta

function, i.e., p(θk|rk) = δ(θ − θ̂k). The ML data decision rule

is then derived from (2) and (3) as follows

max
i∈{1,...,C}

Li(k) = max
i∈{1,...,C}

e−
|rk−Siejθ̂k |2

2N0

(2πN0)1/2
. (4)

Thus, if the recovered θ̂kis treated as the true value of θk, the ML

decision rule in (3) becomes equivalent to the minimum distance

based coherent detection rule [14].

III. ALTERNATIVE FORM FOR ML DECISION RULE

In this section, we seek to derive alternative forms of the

optimum receiver for uncoded data in the presence of phase

noise. Particularly of interest are ML detector structures that

are tractable in their exact or approximate form. Adopting the

system model discussed above, consider the problem of data

detection in the kth time slot. Assume θk to be drawn from an

arbitrary probability distribution. Then, by performing Taylor

series expansion of f(θk) = p(rk|mk = Si, θk) about θk = θ̂k

in (3), it can be rewritten as

max
i∈{1,...,C}

Li(k) = max
i∈{1,...,C}

1

(2πN0)1/2

∫ π

−π

[

f(θ̂k)

0!
+

f{1}(θ̂k)

1!

×(θk − θ̂k) +
f{2}(θ̂k)

2!
(θk − θ̂k)2 + . . .

]

× p(θk|rk)dθk,

= max
i∈{1,...,C}

1

(2πN0)1/2

[

f(θ̂k)M0

0!
(5)

+
f{1}(θ̂k)M1

1!
. . . +

f{n}(θ̂k)Mn

n!
+ . . .

]

.

That is, the decision rule in equation (3) is equivalent to

the maximization of the weighted sum of Mj , j ∈ Z
+ over

Si ∈ {1, . . . , C}. Here, Mj is the jth central moment of the

conditional PDF, p(θk|rk), and f{n}(θ̂k) is the nth derivative of

f(θk) given by

f(θk) =
e−

|rk−Siejθk |2

2N0

(2πN0)1/2
, (6)

and evaluated at θk = θ̂k. For the Taylor series expansion in (5)

to converge to f(θk) for all values of θk, it is required that f(θk)
be an entire function in θk, ∀θk ∈ R. The proof for this is given

in Appendix A.

In deriving (5) no restrictive assumptions are made on the

distribution of θk. In addition, we do not assume any form of

decision feedback or data-aided mode of operation at the receiver.

Thus, the problem of determining the optimum ML detector is

reduced to estimating the central moments of the conditional PDF

of θk, as opposed to estimating the PDF itself in [5]. The central

moments of a distribution can be estimated for a given data set

[17]. In its exact form, the new receiver structure incurs high

computational complexity on the receiver, thereby constraining

practical utility. As we shall see in the sequel, the parametric

form of the ML detection rule in (5) allows simple approximation

by using a finite number of terms and obtains performance close

to that of the original ML rule.

A. Truncation of the Sum-of-Central-Moments ML Rule

The alternative ML decision rule in (5) shows that the optimal

ML decision for achieving minimum SEP requires a knowledge

of all central moments of the conditional PDF, which is equivalent

to having complete knowledge of the distribution. In this section,

we present two techniques to truncate the rule in (5) to a finite

number of terms.

1) Determine the number of terms to be retained, n: We first

seek to determine the number of terms that are to be retained in

a truncated version of (5) such that the error of this approximate

rule, with respect to the original ML rule is very small. This

ensures that the SEP performance of the approximate ML rule is

close to that of the optimal ML rule. Consider an approximate



ML rule obtained by retaining n terms in the Taylor series as

follows

max
i∈{1,...,C}

Li(k) = max
i∈{1,...,C}

1

(2πN0)1/2

[

f(θ̂k)M0

0!

+
f{1}(θ̂k)M1

1!
+ . . . +

f{n}(θ̂k)Mn

n!

]

. (7)

The upper bound on the error for this approximation with respect

to the original ML rule is given as

εn+1 ≤
1

(2πN0)1/2

(

|Im{r∗
kSie

jθ1}(θm−θ̂k)|
N0

)n+1

(n + 1)!
, (8)

where the proof for (8) is presented in Appendix B. Equation (8)

can be used to determine the number of terms to be retained in

the approximate ML rule, such that the error due to truncation of

(5) to a finite number of terms diminishes to a sufficiently small

value. This in turn ensures that the approximate rule is close to

the original ML rule. For the error to diminish to a sufficiently

small value, it is straightforward to see that we need n, such that





∣
∣
∣Im{r∗kSie

jθ1}
(

θm − θ̂k

)∣
∣
∣

N0





n+1

< (n + 1)!. (9)

Since an upper bound on the approximation error is used in

(9), numerically solving the inequality gives an upper bound on

the number of terms that are to be retained in the approximate

decision rule.

2) Fix the number of terms to be retained, n: Another ap-

proach to approximating the ML decision rule by truncation is

to fix the number of terms in the Taylor series expansion, n, and

investigate the various scenarios where the approximate decision

rule achieves SEP performance close to that of the ML decision

rule. Consider the case where the Taylor series is truncated to

n = 2; i.e., only the first three terms in the optimal decision rule

in (5) are considered. This case is particularly interesting as it

corresponds to scenarios where the conditional distribution of θk

is unknown except for its mean and variance. We first define an

approximate SBS detection rule for uncoded data over AWGN

channel as

max
i∈{1,...,C}

Ai(k) = max
i∈{1,...,C}

[

f(θ̂k)M0

0!
+

f{1}(θ̂k)M1

1!

+
f{2}(θ̂k)M2

2!

]

,

= max
i∈{1,...,C}

[

f(θ̂k)M0

0!
+

f{2}(θ̂k)σ2
p

2!

]

. (10)

The second-order approximate ML rule in (10) consists of two

terms; the first term is the zero-th order term from the Taylor

series and is identical to the minimum distance based coherent

symbol detection rule. The second term is the variance of the

conditional PDF of θk weighted by the second derivative of

f(θk) = p(rk|mk = Si, θk), which intuitively gives a measure of

sharpness or curvature of p(rk|mk = Si, θk) about rk = Sie
jθ̂k .

The most likely symbols result in high magnitude of sharpness

of p(rk|mk = Si, θk) about rk = Sie
jθ̂k . Thus, the objective

function in the optimization problem characterizing the decision

rule in (10) is intuitively appealing, in that it can be viewed

as a weighted combination of the distance based measure (as

from coherent detection) and the curvature of p(rk|mk = Si, θk)
weighted by the variance of the conditional distribution of θk.

The upper bound on the error of this approximation is given

as

ε3 ≤

∣
∣
∣
∣
∣
∣
∣

(

θm − θ̂k

)3

6(2πN0)1/2

∣
∣
∣
∣
∣
∣
∣

[∣
∣
∣
∣
∣
−

(
Im{r∗kSie

jθ1}

N0

)3
∣
∣
∣
∣
∣

(11)

+

∣
∣
∣
∣

Im{r∗kSie
jθ1}

N0

∣
∣
∣
∣
+

3
∣
∣Im{r∗kSie

jθ1}
∣
∣
∣
∣Re{r∗kSie

jθ2}
∣
∣

N2
0

]

The proof for the approximation error bound is presented in

Appendix B. From (11), we develop insight into the scenarios

where the approximate decision rule would be close to the ML

decision rule in SEP performance.

• The error in approximation is inversely proportional to

AWGN channel noise variance. Hence the error decreases

with increase in the variance of the AWGN channel or

equivalently with decreasing SNR for a given constellation

and phase noise variance.

• The error in approximation is directly proportional to the

magnitude of phase noise relative to the mean θ̂k of the

conditional PDF of θk.

• The error in approximation is directly proportional to the

magnitude of the symbol point in the constellation. This

implies that the error in the second-order approximated ML

rule increases with increase in the size of the constellation

for a given AWGN channel noise variance and phase noise

variance.

IV. SIMULATIONS AND DISCUSSION

By simulations, we first seek to investigate the number of

terms, n, required to diminish the error in the approximate

decision rule with respect to the optimal ML decision rule. It

is difficult to simulate the approximate decision rule when the

required number of terms, n, is large. Hence, we simulate the

performance of the decision rule given by the difference between

the original rule in (3), and the upper bound on the error in (8)

resulting from truncation of the ML rule to an arbitrary n terms.

The phase noise random variables are considered to be Gaussian

i.i.d. with variance σ2
p . This model is valid for a phase noise pro-

cess in the case of a locked phase-locked loop (PLL) with small

loop bandwidth [18]. We consider 16-QAM modulation scheme

(C = 16), a fixed SNR of 11 dB, and different conditional PDF

variance values, σ2
p = 10−1, 10−2, 10−3. Fig. 1 illustrates the

dependence of SEP performance of the approximate rule on n,

for different values of σ2
p . For a given constellation and SNR, we

observe that the number of terms required increases as the phase

noise variance increases. Therefore, when σ2
p is large, higher

number of central moments of the conditional PDF of θk, and

higher order derivatives of f(θk) are required in the approximate

decision rule. Note that n in Fig. 1 is an upper bound on the

number of terms to be retained in the truncated ML rule. In

the ensuing discussion, we observe that the approximate ML

rule with just two terms approaches optimal SEP performance

for cases of low phase noise variance and low SNR. This also

includes the case of σ2
p ≤ 10−2 considered above for 16-QAM.

We now discuss simulation results demonstrating SEP perfor-

mance versus SNR per bit using (10) as the decision rule for

detecting uncoded data. Two modulation schemes with relatively

different constellation order are considered for study: (i) A lower

order 16−QAM constellation, and (ii) a higher order 1024−QAM
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constellation. This choice is motivated by the analytical obser-

vation that the error in approximation would depend on the size

of the constellation. The phase noise random variables are again

considered to be Gaussian i.i.d. with variance σ2
p.
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approximate rule and coherent detection for 1024 QAM, σp = 10

−4

1) Dependence on AWGN variance: Fig. 2 presents results for

C = 16, σ2
p = 10−2 and SNR per bit up to 12 dB. It

can be easily observed that the approximate rule in (10)

outperforms the coherent detector (4) till around 12 dB

SNR per bit. At 12 dB, a gain of 1 dB in SNR per bit

is observed for the approximate method when compared to

the case of coherent detection. Also, in this SNR regime, the

performance of the approximate decision rule is observed to

be close to that of the optimal ML. Similar observations can

be made for the case C = 1024, σ2
p = 10−4 in Fig. 3, where

a gain of around 1 dB is observed at around 28 dB SNR per

bit. We observe that as AWGN variance is decreased, the

maximum variance of the conditional PDF of phase noise for

which the approximation gives performance close to optimal

SEP, decreases.

2) Dependence on phase noise variance: We observe that SEP

performance of the rule in (10) is close to that of the optimal

ML rule when σ2
p < 10−2 for C = 16, and SNR ≤ 12 dB.

This is also observed when σ2
p ≤ 10−4 for C = 1024, and

SNR ≤ 28 dB. In both the cases, a gain of around 1 dB can

be observed when compared to the performance of coherent

detection. As σ2
p is increased, the maximum SNR for which

the SEP performance of the approximate rule is close to the

optimum, decreases.

3) Dependence on size of constellation: For a given SNR and

phase noise variance, the error in the second-order approx-

imated ML rule increases with increase in the distance

of a symbol point from the origin of the constellation.

With increase in the size of the constellation, the maximum

variance for which the approximation renders SEP close to

that of the optimal ML rule, decreases.

In general, we observe that the second order approximation of the

ML rule operates close to the original ML SEP in scenarios of

low phase noise variance and high AWGN noise. When the deci-

sion rule in (10) deviates significantly from the original ML rule,

higher number of terms needs to be included in order to realize

SEP performance that is close to optimum. Note that no form of

decision feedback or data aided schemes have been employed at

the receiver while implementing the approximate ML rule. The

additional computation involved relates to evaluating the function

f(θk), its derivatives at θ̂k, and the mean and variance of the

conditional PDF of θk.

V. CONCLUSIONS

We show that the ML data detector for symbol by symbol

detection in the presence of phase noise can be formulated as

a weighted sum of central moments of the conditional PDF of

phase noise. We present an analytical method to determine the

number of terms to be retained in the approximate ML decision

rule that still ensures SEP performance close to optimum. Fur-

thermore, we approximate the optimal structure by truncating the

ML rule to two terms and observe that this approximation renders

SEP performance close to optimum for low phase noise variance

and low SNR.

APPENDIX A

PROOF THAT f(θk) IS AN ENTIRE FUNCTION IN θk

Lemma 1: If f(θk) = 1
(2πN0)1/2 e−

|rk−Siejθk |2

2N0 , then the nth

derivative of f(θk) evaluated at any arbitrary point θk = θ̂k is of

the form

f{n}(θ̂k) = wn

(

Im{r∗kSie
jθ̂k}

N0

)n

, (A-1)

where

(

Im{rkSie
jθ̂k}

N0

)n

is the highest exponential power in

f{n}
(

θ̂k

)

, and wn is a function of rk, Si, e
jθ̂k , and N0.



Proof: For n = 1, it is trivial to see that f{1}(θ̂k) =

w1
Im{rkSie

jθ̂k}
N0

. Hence, we first prove that (A-1) holds for n = 2
as follows

f{2}(θ̂k) =
e−

|rk−Siejθ̂k |2

2N0

(2πN0)1/2

(

r∗kSie
jθ̂k − rkS∗

i e−jθ̂k

)2

4N2
0

×




−1 −

2N0

(

r∗kSie
jθ̂k + rkS∗

i e−jθ̂k

)

(

r∗kSiejθ̂k − rkS∗
i e−jθ̂k

)2




 ,

= w2

(

Im{r∗kSie
jθ̂k}

N0

)2

. (A-2)

Assume that (A-1) holds true for n ∈ N, i.e.,

f{n}(θ̂k) = wn

(

Im{rkSie
jθ̂k}

N0

)n

,

= w′
ne

−|rk−Siejθ̂k |2

2N0

(

Im{r∗kSie
jθ̂k}

N0

)n

.(A-3)

Now the (n + 1)th derivative is evaluated as in (A-4). Hence

result in (A-1) also holds for f{n+1}(θ̂k). Since both the basis

and the inductive steps have been proven, (A-1) holds true ∀n ∈
N.

Lemma 2: f(θk) is an entire function in θk, i.e., the Taylor

series expansion of f(θk) is equal to the function for all values

of θk ∈ R.

Proof: The function represented by f(θk) is a real function

in θk ∈ R, given that both its domain and range are real valued.

Hence it is analytic ∀θk ∈ R if, and only if, it is infinitely

differentiable and can be represented by a convergent power

series evaluated about any arbitrary point θ̂k ∈ R [15]. The power

series representation of f(θk) about θ̂k ∈ R is given as

f(θk) =
∞∑

n=0

f{n}(θ̂k)

n!

(

θk − θ̂k

)n

, (A-5)

where f{n}, n ∈ Z
+ is the nth derivative of f(θk). f(θk) is a

function that is a composition of the exponential function in θk.

Given that the exponential function is infinitely differentiable;

any function that is a composition of an exponential function is

also infinitely differentiable [15].

The convergence of the power series (A-5) ∀θk ∈ R can be

proved by the ratio test. Let an denote the n-th term in the power

series given in (A-5), where

an =
f{n}(θ̂k)

n!

(

θk − θ̂k

)n

=

wn

(

Im{rkSie
jθ̂k}

N0

)n

n!

(

θk − θ̂k

)n

.

Here, f{n}(θk) at θk = θ̂k can be obtained from Lemma 1.

Hence by ratio test, we have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣
∣

wn+1
Im{rkSie

jθ̂k}
N0

(

θk − θ̂k

)

wnn

∣
∣
∣
∣
∣
∣
∣

= 0.

The radius of convergence rconv of the series is evaluated as

rconv = lim
n→∞

∣
∣
∣
∣
∣
∣

nwn

Im{rkSie
jθ̂k}

N0
wn+1

∣
∣
∣
∣
∣
∣

. (A-6)

When n → ∞, the radius of convergence rconv → ∞ in (A-

6). Now we have that f(θk) is infinitely differentiable and can

be represented by a convergent power series for ∀θk ∈ R. It

remains to be shown that the Taylor series converges to the

original function f(θk),∀θk ∈ R. To prove this, consider a finite

Taylor series expansion of f(θk)

f(θk) =

n∑

n=0

f{n}(θ̂k)

n!

(

θk − θ̂k

)n

. (A-7)

The error in this truncated Taylor series with respect to the

original function is given by the remainder term in Taylor’s

theorem as

R{n+1}(θk) =
f{n+1}(θc)

(n + 1)!

(

θk − θ̂k

)n+1

. (A-8)

Here θc ∈
(

θk, θ̂k

)

if θk < θ̂k, or θc ∈
(

θ̂k, θk

)

if θk > θ̂k. In

the limit n → ∞, we have

lim
n→∞

R{n+1}(θk) = lim
n→∞

f{n+1}(θc)

(n + 1)!

(

θk − θ̂k

)n+1

,

= lim
n→∞

wn+1

((

θk − θ̂k

)
Im{rkSie

jθ̂k}
N0

)n+1

(n + 1)!
,

= 0. (A-9)

The limit n → ∞ in (A-9) evaluates to zero since in the limit,

n! grows faster than

(

Im{rkSie
jθ̂k}

N0

)n+1

×
(

θk − θ̂k

)n+1

, which

is an exponential function in n [16]. We thus prove that f(θk)
is an entire function in θk.

APPENDIX B

PROOF FOR UPPER BOUND ON εn+1

Consider an approximate ML rule obtained by retaining n
terms in the Taylor series as follows

max
i∈{1,...,C}

Li(k) = max
i∈{1,...,C}

1

(2πN0)1/2

[

f(θ̂k)M0

0!

+
f{1}(θ̂k)M1

1!
+ . . . +

f{n}(θ̂k)Mn

n!

]

.

f{n+1}(θk) =
dw′

n

dθk
e

−|rk−Siejθk |2

2N0

(
Im{r∗kSie

jθk}

N0

)n

+

(
r∗kSie

jθk − rkS∗
i e−jθk

)

2N0

(
Im{r∗kSie

jθk}

N0

)n

wn

+
d

(
Im{r∗

kSie
jθk}

N0

)n+1

dθk
e

−|rk−Siejθk |2

2N0 w′
n = wn+1

(
Im{r∗kSie

jθk}

N0

)n+1

. (A-4)



Then, the absolute value of the error of this approximation with

respect to the original ML rule is given

εn+1 =

∫ π

−π

∣
∣
∣
∣

f{n+1}(θc)

(n + 1)!

(

θk − θ̂k

)n+1
∣
∣
∣
∣

︸ ︷︷ ︸

,|τn+1|

p(θk|rk)dθk, (B-1)

where τn+1 is the error arising from the truncation of the Taylor

series [15]. The variable θc in τn+1 depends on both θ̂k and θk,

and cannot be explicitly determined. Note that we consider the

absolute value of τn+1, rather than its actual value, since it can

be positive or negative due to each θk value. Using (B-1), the

upper bound on εn+1 can be determined as follows

εn+1 ≈

∫ π

−π

e−
|rk−Siejθ̂k |2

2N0

︸ ︷︷ ︸

,φ

∣
∣
∣Im{r∗kSie

jθc}
(

θk − θ̂k

)∣
∣
∣

n+1

N0
N+1(2πN0)1/2(n + 1)!

×p(θk|rk)dθk, (B-2a)

≤
1

(2πN0)1/2

(

|Im{r∗
kSie

jθ1}(θm−θ̂k)|
N0

)n+1

(n + 1)!
, (B-2b)

where (B-2a) is obtained by first using the approximation

f{n+1}(θc) ≈
e−

|rk−Siejθ̂k |2

2N0

(2πN0)1/2

(
Im{r∗kSie

jθc}

N0

)n+1

, (B-3)

for large values of
Im{r∗

kSie
jθc}

N0
, which is verified in Lemma 1 in

Appendix A. We have Im{r∗kSie
jθc} = |r∗kSi| sin(θc+arg{r∗kSi})

that is maximum when θc + arg{r∗kSi} = π/2. Thus we set θc

as θ1 = π/2 − arg{r∗kSi} as in (B-2b). Though θk is drawn

from p(θk|rk) and can take any values between [−∞,∞], it can

be upper bounded to θm = kσp using the Chebyshev inequality

[13], where k ∈ R and σ2
p is the variance of p(θk|rk) such that

Pr
(

|θk − θ̂k| ≥ kσp = θm

)

≤
1

k2
. (B-4)

In (B-2a), the term φ ∈ [0, 1] and is upper bounded to one to

finally obtain (B-2b).

A. Derivation of Upper Bound for ε3

The bound on the error for the approximate ML rule in (10)

is evaluated as

ε3 =

∫ π

−π

∣
∣
∣
∣

f{3}(θc)

(3)!

(

θk − θ̂k

)3
∣
∣
∣
∣

︸ ︷︷ ︸

,|τ3|

p(θk|rk)dθk, (B-5)

≤
∣
∣
∣f{UB}(θc, θk)

∣
∣
∣

∫ π

−π

p(θk|rk)dθk =
∣
∣
∣f{UB}(θc, θk)

∣
∣
∣

Here f{UB}(θc, θk) refers to the upper bound of τ3, which is

given by

|τ3| ≤

∣
∣
∣
∣
∣
∣
∣

(

θk − θ̂k

)3

6(2πN0)1/2

∣
∣
∣
∣
∣
∣
∣

[∣
∣
∣
∣
∣
−

(
Im{r∗kSie

jθc}

N0

)3
∣
∣
∣
∣
∣

(B-6a)

+

∣
∣
∣
∣

Im{r∗kSie
jθc}

N0

∣
∣
∣
∣
+

3
∣
∣Im{r∗kSie

jθc}
∣
∣
∣
∣Re{r∗kSie

jθc}
∣
∣

N2
0

]

≤

∣
∣
∣
∣
∣
∣
∣

(

θm − θ̂k

)3

6(2πN0)1/2

∣
∣
∣
∣
∣
∣
∣

[∣
∣
∣
∣
∣
−

(
Im{r∗kSie

jθ1}

N0

)3
∣
∣
∣
∣
∣

(B-6b)

+

∣
∣
∣
∣

Im{r∗kSie
jθ1}

N0

∣
∣
∣
∣
+

3
∣
∣Im{r∗kSie

jθ1}
∣
∣
∣
∣Re{r∗kSie

jθ2}
∣
∣

N2
0

]

First, Triangle and Cauchy-Schwartz inequality [15] are applied

to |τ3| in order to obtain (B-6a). Equation (B-6a) is monotonically

increasing for all values of θk. Hence we let θk to be upper-

bounded by θm as in (B-4). Then, Im{r∗kSie
jθc} is upper

bounded by setting θc = θ1, where θ1 = π/2 − arg{r∗kSi}
as discussed before. Similarly, we have Re{r∗kSie

jθc} =
|r∗kSi| cos(θc + arg{r∗kSi}) and this becomes maximum when

θc + arg{r∗kSi} = 0. Hence, we upper bound Re{r∗kSie
jθc} by

setting θc = θ2, where θ2 = −arg{r∗kSi},
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