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Abstract

In this paper we propose an enhancement to the Amplify and Forward (AF) protocol. The proposed multi-

relay scheme assumes that the source, destination, and each relay have M , N , and 1 antennas, respectively.

It is assumed that the source does not have access to the channel state information and takes advantage of

uniform spatial multiplexing. Unlike the conventional AF scheme, the proposed scheme allows for each relay

to adjust the phase of received signal before applying the AF protocol. Imperfect channel estimation and

its effect on the performance of the multi-relay scheme is also investigated. In determining the parameters,

conventional optimization schemes cannot be applied due to the non-convex nature of the function. A low

complexity method is used to optimize the system that utilizes bisection search. Numerical calculations of

capacity and BER simulations demonstrate a significant performance gain over conventional AF.

I. INTRODUCTION

Cooperative communication has become a rapidly emerging and important area of research,

enabling efficient spectrum usage by resource sharing among multiple nodes in the network.

Pioneering contribution can be found in [1]- [2] and results on MIMO broadcast and multiple-access

channels have been reported in [3], [4], and [5]. Since future generations of cellular networks are

migrating to higher carrier frequencies, MIMO cooperative communications is a potentially attractive

method to combat the resulting severe signal attenuation.

In [6], it is shown that a single antenna cooperative system is capable of providing large SNR

gains but no multiplexing gain. In [7], a cooperative system with multiple antennas at the source,

relay, and destination is proposed, but only one relay is considered. However, the proposed scheme

in [7] assumes perfect knowledge of the channel state information (CSI) at the destination and relays

which results in significant complexity that overshadows the performance gains. In [8] and [9], various

schemes based on AF, Decode and Forward (DF), and a combination of the two (hybrid schemes)
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are proposed. However, the performance of the proposed non-coherent scheme is limited and only

asymptotic results for large numbers of relays are given. In [10] and [11], beamforming schemes are

proposed that aim to maximize the capacity of multi-antenna relay systems. Nevertheless, both [10]

and [11] require full CSI at the source and relays. The Orthogonal Random Beam Forming (ORBF)

scheme, first proposed in [12] and later extended to multiple access channels in [13], only requires

partial feedback at the source. However, the requirement of a feedback mechanism adds significant

overhead to the operation of the cooperative system. Furthermore, the above studies do not consider

the effect of imperfect channel estimation on the overall performance of ORBF. In [14], it is shown

that for a single relay system, AF is significantly outperformed by DF due to the amplification of

noise at the relay in low SNR region. However, by considering multiple relays, an AF scheme can

overcome these shortcomings and reach the same performance as that of DF in median to high SNR

region.

We propose a novel low-feedback scheme based on a modification of the AF protocol that

circumvents the shortcomings of the AF algorithm and significantly improves the overall system

performance. The proposed algorithm first takes advantage of multiple single-antenna relays.

Secondly, the phase of the forwarded signal at each relay is adjusted based on the calculated phase

group set. The scheme is appropriately named Amplify Phase Shift Forward (APSF). A simple and

iterative algorithm based on a bisection search is described that allows for the phase shift required

at each relay to be efficiently determined.

II. CHANNEL AND SYSTEM MODEL

A wireless network consisting of a designated source-destination pair and K relay terminals located

randomly and independently is considered (see Figure. 1). The source and destination, equipped

with M and N antennas, respectively, are denoted as S and D. The kth relay employs a single

transmit/receive antenna and is denoted by Rk(k = 1, 2, · · · , K). We assume that there is no direct

link between S and D due to large distance between S and D. Data is transmitted from source through

relays to the destination over two time slots in half-duplex mode. In APSF, the source has M transmit

antennas. The Vertical Bell Laboratories Layered Space-Time Architecture (VBLAST) proposed in

[15] is employed for the transmission of the signal from the source to the relays in the first time

slot. After processing the received signals, the relay terminals simultaneously transmit the processed

data to the destination terminal during the second time slot while the source terminal is silent. As in
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[9], frequency-flat fading channels are assumed during each transmission block. It is also assumed

that all the terminals are perfectly synchronized.

Denote the signal transmitted from the source as s. The signal model at the kth relay is given by

rk =

√
P

M
hT

k s + nk (1)

where rk is the received signal and P is the power available at the source. The vector s is the M ×1

transmit signal vector with covariance matrix IM , nk is the zero mean unit variance complex additive

white Gaussian noise at the kth relay and hT
k is the 1 ×M channel vector from the source to the

kth relay. hk can be further expressed as hk =
√

αkh̃k, where the entries of h̃k are independent and

identically distributed (i.i.d) complex Gaussian random variables with unit variance, and αk represents

the path loss and independent lognormal shadowing effects, and can be expressed as αk = x−γ10ζk/10,

where x is the distance between the source and relay k. The scalar γ denotes the path loss exponent

(set to 4 in this paper). The lognormal shadowing term ζk is a random variable drawn from a normal

distribution with a mean of 0 dB and a standard deviation δ (dB). In our simulations δ=8dB, which

is a value typical in urban cellular environments. We normalized the range between the source and

destination so that x is 0.5kM. Throughout, we consider the uplink cellular network, where the

source is a subscriber terminal, the destination is the base station, and relays can be fixed as part

of the infrastructure or subscriber terminals. In all the protocols to be discussed, we assume that

the kth relay has perfect or estimated CSI from the source to the relay and that the destination

has full knowledge of perfect or estimated CSI from the source to relay and also from the relay to

destination.

III. RELAYING SCHEME

A. Amplify and Phase Shift Forward

In APSF, the phase adjustment required at each relay can be efficiently calculated at the destination

and fed back to the relays since the destination has knowledge of both source-to-relay and relay-to-

destination channels. Therefore, APSF requires only the set of phases to be fed back to the relays,

minimizing overhead and complexity.

The APSF protocol involves phase shift and amplification:

tk =
√

ηk
rk

|rk|e
jθk =

√
ηk

∑M
i=1

√
P
M

hk,isi + nk√∑M
i=1

P
M
|hk,i|2 + 1

ejθk (2)

April 18, 2008 DRAFT



4

where
√

ηk is the power available at the kth relay, and θk is the phase shift at the kth relay. In (2),

hk,i is the channel from the ith antenna to the kth relay.

B. Determining the Phase Shift

The received signal model at the destination is

y =
K∑

k=1

gktk + nd (3)

where the vector gk is the channel from kth relay to the destination, which is written as gk =
√

βkg̃k,

where each entry of g̃k is an i.i.d complex Gaussian random variable with unit variance and βk

contains the same path loss as αk and independent lognormal shadowing terms with the same deviation

as in αk. The vector nd is the N×1 complex circular additive white Gaussian noise at the destination

with identity covariance matrix.

Substituting (2) into (3),

y =
∑K

i=1 gih
T
i

√
P
M

ηi
P
M
|hi|2+1

ejθisi +
∑K

i=1 gini

√
ηi

P
M
|hi|2+1

ejθi + nd (4)

Through simple manipulation, (4) is reformulated as:

y =
K∑

i=1

Uisi + n (5)

where

Ui = gih
T
i

√
P
M

ηi

P
M
|hi|2 + 1

ejθi . (6)

and

n =
K∑

i=1

gini

√
ηi

P
M
|hi|2 + 1

ejθi + nd (7)

The noise covariance matrix is

Σn = E[nnH ] =
∑K

k=1 gkgH
k ηk

1
P
M
|hk|2+1

+ IN (8)

The capacity of the cooperative system may be calculated via [16]

C(θ1, θ2, . . . , θK) = maxθ1,θ2,...,θK

1
2
log2det

(
I +

(∑K
l=1 Ul

)(∑K
m=1 Um

)H

Σ−1
n

)
(9)

Assume the set of phases (θ1, . . . , θk−1, θk+1, . . . , θK) is fixed, after straightforward algebraic

manipulation, we arrive at

C(θk) =
1

2

(
log2det(Σ1) + max

θk

log2det
(
I + Aejθk + AHe−jθk

))
(10)
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where

Σ1 = I +

(
UkUH

k +
K∑

m=1,m6=k

K∑

l=1,l 6=k

UmUH
l

)
Σ−1

n (11)

and

A =

(
Uk

ejθk

K∑

m=1,m6=k

UH
m

)
Σ−1

n Σ−1
1 . (12)

Take first derivative of C(θk) with respect to θk, we have

Tr
[(

I + Aejθk + AHe−jθk
)−1 (

Aejθk − AHe−jθk
)]

= 0 (13)

1) The case of a single antenna at the receiver: In this case A in (13) becomes scalar a. From

(13) we obtain

θk,1 =
1

2
arctan

<(a∗
a

)

=(a∗
a

)
, θk,2 = π +

1

2
arctan

<(a∗
a

)

=(a∗
a

)
(14)

We also have

∂2C

∂θ2
k

|θk=θk,1

∂2C

∂θ2
k

|θk=θk,2
< 0. (15)

Which implies either, θk,1 or θk,2 is a maximize C(θk).

2) The case of multiple antennas at the receiver: The maximization problem with multiple receive

antennas at the destination (N ≥ 2) is very difficult to analyze from (13). Let B = 1
2
I + Aejθ, from

(9) we have

argmax
θk

C(θk) = argmax
θk

det
(
B + BH

)
(16)

Through simple manipulation, we have det(BH) = det(B)∗ = 1
2

(
1 + a∗e−jθk

)
where

a = 2hT
k

√
P
M

ηk

P
M
|hk|2 + 1

K∑

m=1,m6=k

UH
mΣ−1

n Σ−1
1 gk (17)

As det(B) and det(BH) are linear combinations of sinusoid functions, they have the property that

in one period, there is a unique maximum and a unique minimum. We observe through simulations

that det
(
B + BH

)
also display such a property. However, we can not prove the uniqueness of the

maximum. This motivates a bisection search to find θk which maximize C(θk).

From (9) it is observed that the system capacity is a function of the phases θ1, θ2, . . . , θK .

Since the log function is monotonically increasing, maximizing C(θ1, θ2, . . . , θK) is equivalent to

maxθ1,θ2,...,θK
det(Ψ), where

Ψ = I +

(
K∑

i=1

UiUH
i

)
Σ−1

n (18)
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From (6) we have

Ui (θ1, θ2, . . . , θK) = Ui (θ1 + 2m1π, θ2 + 2m2π, . . . , θK + 2mKπ) (19)

where m1,m2, . . . , mK can be arbitrary integers. From (9) and (19) we have

C(θ1, θ2, . . . , θK) = C(θ1 + 2m1π, θ2 + 2m2π, . . . , θK + 2mKπ). (20)

In other words, C(θ1, θ2, . . . , θK) is a periodic function of θ1, θ2, . . . , θK with a period of 2π for the

phase of each relay. So the bisection search for θk is performed in a 2π period.

Though bisection search can find θk which maximize C(θk) when fixing

(θ1, . . . , θk−1, θk+1, . . . , θK). It is not guaranteed that the iterative bisection search algorithm

discussed in Section D will find the global optimum phase set. A plot of the system capacity of

a three-relay system with the phase of one of the relays fixed is illustrated in Figure 2 where the

capacity in a 4π by 4π radian phase region is represented (system capacity is also 2π-periodic). For

each 2π by 2π radian region as depicted in Figure 2, there exists multiple maxima and minima.

This illustrates that maximizing (20) is a non-convex problem with possible multiple extremes.

C. Channel Estimation

In the case of imperfect channel estimation the model proposed in [17], [18], [19], [20] is applied

to the multi-relay scheme proposed here. When orthogonal training sequences are transmitted from

each source transmit antenna or relay, i.e. bH
i bj = δi,j (δi,j = 1 if i = j and δi,j = 0 if i 6= j), the

received signal at the ith received antenna is given by

ai =
∑M

j=1

√
P
M

hi,jbj + ni (21)

where hi,j is the channel gain from the jth transmit antenna to the ith receive antenna, and ni is the

zero mean complex Gaussian noise vector at the ith receive antenna with E[ninH
i ] = σ2I. We obtain

a noisy version of hi,j , ĥi,j , simply by computing

ĥi,j =
√

M
P

bH
j ai = hi,j +

√
M
P

bH
j ni = hi,j + xi,j (22)

where xij is the zero mean complex Gaussian noise with P [xijx
∗
ij] = σ2

e = Mσ2/P . Note that xijs

are independent of hij and i.i.d. ∀i, j. Based on the above, equations (8) and (6) can be estimated as

Σ̂n = E[n̂n̂H ] =
∑K

k=1 E[(gk + ck)(gk + ck)
H ]ηk

σ2
e∑M

i=1
P
M

(|hk,i|2+σ2
e)+1

+ IN (23)
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Ui = (gi + ci)(hi + di)
T

√
P
M

ηi

P
M
|hi|2 + 1

ejθi , (24)

where ci and di are the estimation error vectors for gi and hi, respectively and σ2
e is the scaled

estimation error variance. Equation (23) can also be re-written as

Σ̂n =
∑K

k=1(gkgH
k + σ2

eIN)ηk
1∑M

i=1
P
M

(|hk,i|2+σ2
e)+1

+ IN . (25)

Equation (25) can then be used to determine Ψ which is employed in the bisection search algorithm

described below.

The time average of (22) over T time slots

avg(ĥi,j,T ) =
ĥi,j,1+ĥi,j,2+...+ĥi,j,T

T
(26)

where ĥi,j,t represents the estimated channel coefficient at time t. Assuming that the channel does

not change appreciably in T time slots, (22) can be rewritten as:

avg(ĥi,j,T ) = hi,j + x̄i,j,T (27)

where x̄i,j,T represents the average of xi,j over T time slots. Under this assumption, the variance

of xi,j decreases with T . This is clearly represented in the simulation results presented in the next

section.

D. Optimization Scheme

As pointed out previously in the case of N > 1 antennas, det(Ψ) is neither convex nor concave,

and it resemble a sinusoid curve in one period when fixing all phases but one of the set of K phases.

This motivates a bisection search algorithm to find the local maxima.

Algorithm:

Step 1. Choose an initial set of randomly generated phases. Denote these phases as

θ
(1)
1 , θ

(1)
2 , . . . , θ

(1)
K .

Step 2. Repeat until calculated system capacity reaches a stopping criterion (the capacity difference

from last iteration below a certain threshold). Cycle through each relay phase by fixing all but one

of the set of K phases. Determine the phase that maximizes det(Ψ) (Eq. (18)).

Denote this the set of phases as θ
(o)
1 , θ

(o)
2 , . . . , θ

(o)
K , where the superscript indicates that a local

maximum is reached. It is also clear that the iterative algorithm converges, since first, the capacity

of the overall system is upper-bounded because there is a power constraint for the total power at the

source, and second, during each iteration of the bisection search algorithm the capacity monotonically

increases.
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IV. SIMULATION RESULTS

In Figure 3, we provide numerical capacity results for cooperative system with M = 2, K = 4,

N = 2, P
σ2

n
in the range of 0dB to 30dB, and Pi

σ2
n

= 10dB where i indicates the ith relay, 1 ≤ i ≤ K.

Figure 3 shows the capacity of the proposed APSF scheme and compares it with the conventional

AF and APSF with imperfect CSI. As noted in Figure 3, the capacity gain compared to that of

the conventional AF (simply amplifying the received signal at every relay) is considerable. This

performance gain is achieved with minimal added feedback and computational complexity. First, the

proposed algorithm does not require CSI at the source and only requires the set of phases to be fed

back to the relays and secondly, the iterative bisection search algorithm converges exponentially fast

to the optimized set of phases. We have observed that convergence occurs after only one or two passs

through all the relay phases. However, it should be pointed out that from an implementation point of

view, APSF requires added hardware compared to AF at the relays which increases hardware costs

and complexity. An analog implementation requires the use of adjustable analog phase shifters (see

[21]). Another approach would be through the use of digital signal processors at the relays. Figure 3

also represents the performance of APSF which degrades under imperfect channel estimation, where

imperfect channel scenarios with time averaging over T = 1 and T = 5 time slots are considered.

We further compare the performance of the iterative algorithm to that of exhaustive search. Under

the exhaustive search scheme, the phase adjustment, θ, for each relay is quantized into N intervals.

Thus, for K relays, there exist NK points to evaluate. The maximum capacity corresponding to

the NK points is determined and compared to the maximum capacity obtained through the outlined

iterative algorithm. For N = 50, it was observed that out of 1000 realizations the maximum capacity

calculated based on these two schemes match 98% of the time. This is mainly due to the existence

of only one maximum or minimum within one period of the capacity expression (9) for 3, 4, or 6

relays in most of the cases (Figure 2 is one of the few scenarios where more than one maximum

and minimum exist within a period).

Figure 4 illustrates the capacity of APSF as a function of SNR at the relays. As expected, when

the SNR at the relays is increased the capacity increases. However, when the SNRs at the relays is

fixed, the capacity gain achieved by increasing the SNR at the source flattens out. This is expected

since the noise at the relays is a limiting factor. In conclusion, when the SNR is balanced at both

the source and the relay a higher capacity can be achieved.

Figure 5 compares the Average Bit Error Rate (ABER) of the conventional AF, DF, and APSF
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under perfect and imperfect channel estimation. QPSK modulation combined with VBLAST is used

and the frame length is set to 20 bits. It is important to note that as the number of relays is increased

the BER performance of APSF tends to significantly improve. This is mainly due to the coherent

combining effect of APSF. Figure 6 represents the corresponding capacities of AF and APSF with

different numbers of relays which are consistent with the BER results presented in Figure 5.

In [22] we compare the performance results of DF and APSF. Similar to AF, the addition of relays

does not improve the BER performance of a multi relay DF system. Therefore, one can deduce that

blind addition of relays based on conventional cooperative schemes, septically AF and DF, does not

result in performance gain. Furthermore, [22] provides insight on the BER and capacity of multi-hop

systems based on AF, DF, and APSF.

V. CONCLUSION

In this paper, we propose a novel cooperative MIMO scheme based on AF named Amplify Phase

Shift Forward (APSF). APSF takes advantage of multiple antennas at the source, multiple antennas

at the destination and employs single antenna relays. It has been demonstrated that by adjusting

the phase APSF provides significant performance improvement over that of convectional AF. The

performance advantage compared to AF is even more significant when the number of relays is four

or more. The advantage gain is achieved without requiring any feedback to the source, very little

feedback to the relays, and limited additional complexity at the destination.
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Fig. 1. MIMO wireless relay network setup. The relay terminals each employ one antenna.
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Fig. 2. Capacity plot of a three relay cooperative system demonstrating multiple extrema.

April 18, 2008 DRAFT



12

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

10

11

SNR at source in dB

b/
s/

H
z

Capacity VS. SNR @ the source (SNR at the relays is fixed at 10dB)

 

 
APSF w. perfect CSI
APSF w. estimated CSI T=5
APSF w. estimated CSI T=1
Conventional AF

Fig. 3. Comparison of the capacity between systems deploying the conventional AF, proposed APSF, and APSF protocols with

imperfect channel estimation performed over 1 and 5 blocks of training data.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

SNR in dB

b/
s/

H
z

 

 

APSF 4R 30dB
Conv 4R 30dB
APSF 4R 20dB
Conv 4R 20dB
APSF 4R 10dB
Conv 4R 10dB
APSF 4R 0dB
Conv 4R 0dB

Fig. 4. Comparison of the capacity between AF and APSF deployed in a two-hop cooperative scheme. Different SNRs at relays are

investigated in this scenario consisting of 4 single antenna relays, 2 source antennas, and 2 destination antennas.

April 18, 2008 DRAFT



13

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

A
B

E
R

ABER vs. SNR for AF and APSF with multiple relays

 

 

AF 4 relays
AF 6 relays
APSF 4 relays
APSF 4 relays, EST. CHAN. T=1
APSF 6 relays
APSF 6 relays , EST. CHAN. T=1

Fig. 5. Comparison of the BER performance for the conventional AF and APSF with 4 and 6 single antenna relays, under the

assumption of perfect and imperfect channel estimation. The plots in the case of AF for 4 and 6 relays overlap since there is almost

no BER gain due to addition of more relays in the case of AF.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

SNR in dB

b/
s/

H
z

 

 

APSF 3R
Conv 3R
APSF 4R
Conv 4R
APSF 6R
Conv 6R
APSF 8R
Conv 8R

Fig. 6. Comparison of the capacity between the conventional AF, and APSF, with 3, 4, 6, and 8 relays (The AF capacity for 3, 4,

and 6 relays overlap).

April 18, 2008 DRAFT


